к шаблону из трех точек,
Возвращаясь к шаблону из трех точек, напомним, что производная по х — это в некотором роде степень изменения функции, то есть скорость ее роста или падения вдоль этой координаты. Приближенно она равна:
dU/dx=(Ur-Uc)/h
для правого отрезка и
dU/dx=(Uc-Ul)/h
для левого. Теперь надо записать приближенную оценку для второй производной с учетом коэффициента теплопроводности. Он может иметь разные значения (р! и рг) в левой и в правой частях шаблона:
d/dx(pdU/dx)={(pr[Ur-Uc])/h-(pl[Uc-Ul])/h}/h (2)
Произведя подстановку в исходное дифференциальное уравнение (1) и упростив выражение, получим алгебраическое уравнение:
aUl+bUc+cUr=0 (3)
связывающее температуры трех соседних узлов сетки с физическими свойствами прилежащих участков пространства, так как значения коэффициентов уравнения зависят от р, k и h:
a=pl/h^2; c=pr/h^2; b=-a-c+k; (4)
Коэффициент а описывает свойства левой части шаблона, а с — правой, а Ь — обеих вместе. Чуть позже мы увидим, что коэффициент b попадет в диагональ матрицы. Теперь надо примерить шаблон ко всем узлам сетки. Узел номер 1 даст уравнение:
a1U0+b1U1+c1U2=0,
узел номер 2:
a2U1+b2U2+c2U3=0,
и т. д. Здесь важно следить за индексами. Для простоты пока считаем, что коэффициенты а,, b,, с, не изменяются при переходе от узла к узлу. В узлах сетки вблизи границ (то есть в узле 1 и узле N-1) уравнения упрощаются, так как £/„ и UN считаются известными и поэтому перемещаются в правую часть уравнения. Так, первое уравнение системы станет:
b1U1+c1U2=0,
а последнее:
an-1Un-2+bn-1Un=+1=0,
Все остальные уравнения будут иметь вид (3). Теперь пора изобразить всю систему уравнений, используя матричные обозначения и не отображая многочисленные нули. Для простоты будем считать, что N = 5:
b1
|
c1
|
|
|
U1
|
|
-a1U0
|
a2
|
b2
|
c2
|
|
U2
|
|
0
|
|
a3
|
b3
|
c3
|
U3
|
=
|
0
|
|
|
a4
|
b4
|
U4
|
|
-c4U5
|
Вы видите, что матрица системы уравнений имеет характерную регулярную трех-диагональную структуру, а структура вектора правых частей тоже легко прочитывается. Граничные; условия краевой задачи заняли подобающие им крайние места, а внутренние позиции — нули.
Содержание Назад Вперед
Forekc.ru
Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий